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Abstract

We introduce the concept of q-regularly varying functions and establish
basic properties of such functions. Among other things it is shown that
considering regular variation in q-calculus is somehow natural and leads to
interesting observations and simplifications compared with classical continuous
and discrete theories. The obtained theory is applied to an investigation of
asymptotic behavior of solutions to linear second-order q-difference equations.

PACS numbers: 02.30.Hq, 02.30.Gp, 02.30.Lt, 02.30.Mv
Mathematics Subject Classification: 26A12, 39A12, 39A13

1. Introduction

We are interested in obtaining a basic theory of the so-called q-regularly varying functions,
i.e., the functions defined on the lattice qN0 := {qk : k ∈ N0} (or on qZ), q > 1, with
regularly varying like behavior. As we shall see, this setting is very natural for examining
regular variation and leads to interesting observations and simplifications compared with
classical continuous and discrete theories. In the second part of the paper, we apply this theory
to study asymptotic behavior of solutions to the second-order linear q-difference equation
D2

qy(t) = p(t)y(qt).
Recall that a measurable function f : [a,∞) → (0,∞) is said to be regularly varying of

index ϑ , ϑ ∈ R, if it satisfies

lim
x→∞

f (λx)

f (x)
= λϑ for all λ > 0; (1)
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we write f ∈ RVR(ϑ). If ϑ = 0, then f is said to be slowly varying. Fundamental
properties of regularly varying functions are that relation (1) holds uniformly on each
compact λ set in (0,∞), and f ∈ RVR(ϑ) if and only if it may be written in the form
f (x) = ϕ(x)xϑ exp

{∫ x

a
η(s)/s ds

}
, where ϕ and η are measurable with ϕ(x) → C ∈ (0,∞)

and η(x) → 0 as x → ∞, see [2, 8, 11, 17]. In the basic theory of regularly varying sequences
two main approaches are known. First, the approach by Karamata [10], based on a counterpart
of the continuous definition: a positive sequence {fk}, k ∈ {a, a + 1, . . .} ⊂ Z, is said to be
regularly varying of index ϑ, ϑ ∈ R, if

lim
k→∞

f[λk]

fk

= λϑ for all λ > 0, (2)

where [u] denotes the integer part of u. Second, the approach by Galambos and Seneta [7],
based on a purely sequential definition: a positive sequence {fk} is said to be regularly
varying of index ϑ if there exists a positive sequence {αk} satisfying fk ∼ Cαk and
limk→∞ k(1 − αk−1/αk) = ϑ, with C being a positive constant. In [6] it was shown that
these two definitions are equivalent. In [13] it is suggested to replace the second condition in
the latter definition (equivalently) by limk→∞ k�αk/αk = ϑ . A regularly varying sequence can
be represented as fk = ϕkk

ϑ
∏k−1

j=a(1 + ψj/j), see [13], or as fk = ϕkk
ϑ exp

{∑k−1
j=a ψj/j

}
,

where ϕk → C ∈ (0,∞) and ψk → 0 as k → ∞, see [6, 7]. The so-called imbedding
theorem, see [6, 7], enables us to apply the continuous theory in the theory of regularly
varying sequences. Recall that the theory of regular variation can be viewed as the study of
relations similar to (1) or (2), together with their wide applications, see, e.g., [2, 8, 12–14].
There is a very practical way how regularly varying functions can be understood: extension in a
logical and useful manner of the class of functions whose asymptotic behavior is that of a power
function, to functions where asymptotic behavior is that of a power function multiplied by a
factor which varies ‘more slowly’ than a power function. In [15, 16] we introduced the concept
of regular variation on so-called time scales (calculus is made on a closed subset of reals),
which offers something more than the imbedding result: once a result on a general time scale
is proved, it automatically holds for the continuous and the discrete case, without any other
effort. Moreover, at the same time, the theory also works on other time scales which may be
different from the ‘classical’ ones. However, that theory requires certain additional condition
on the graininess (i.e., the ‘distance’ between two neighboring points) of a time scale, namely
the graininess has to be sufficiently small. It is demonstrated in [16] that if such a condition is
violated (e.g., graininess is like in qN0 ), then the theory fails to hold. In this paper, we show
how the approach should be modified for the theory of regular variation to work reasonably also
in q-calculus and q-regularly varying functions somehow kept the above described properties.
Moreover, as we shall see, considering the case qN0 in the theory of regular variation is actually
very natural and leads to surprising observations and simplifications. Applications of q-
regular variation in the qualitative theory of second-order linear q-difference equations are also
given. For related results concerning asymptotics of differential and difference equations see
[12, 14], respectively.

This paper is organized as follows. In the following section we first recall basic concepts
of q-calculus. Then we introduce the concept of q-regular variation. We also establish
various characterizations of q-regular variation and show relations (an imbedding result) with
the continuous theory of regular variation. Some important basic properties of q-regularly
varying functions are established as well. In section 3 we apply the obtained theory: we
establish necessary and sufficient conditions for all positive solutions of the second-order
linear q-difference equation D2

qy(t) = p(t)y(qt) to be q-regularly varying with a known
index.
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2. q-regular variation

We start with some preliminaries on q-calculus. For some details on this topic see [1, 9].
See also [4] for the calculus on time scales which contains q-calculus. The q-derivative of a
function f : qN0 → R is defined by Dqf (t) = [f (qt)−f (t)]/[(q−1)t]. Here are some useful
rules: Dq(fg)(t) = g(qt)Dqf (t)+f (t)Dqg(t) = f (qt)Dqg(t)+g(t)Dqf (t), Dq(f/g)(t) =
[g(t)Dqf (t) − f (t)Dqg(t)]/[g(t)g(qt)], f (qt) = f (t) + (q − 1)tDqf (t). The q-integral of
a function f : qN0 → R is defined by

∫ b

a

f (t) dq t =
⎧⎨
⎩

(q − 1)
∑

t∈[a,b)∩qN0 tf (t) if a < b

0 if a = b

(1 − q)
∑

t∈[b,a)∩qN0 tf (t) if a > b,

a, b ∈ qN0 . The improper q-integral is defined by
∫ ∞
a

f (t) dq t = limb→∞
∫ b

a
f (t) dq t .

Since the fraction (qa − 1)/(q − 1) appears quite frequently, let us introduce the notation
[a]q = (qa − 1)/(q − 1) for a ∈ R. Note that limq→1[a]q = a. For p ∈ R
(i.e., for p : qN0 → R satisfying 1 + (q − 1)tp(t) �= 0 for all t ∈ qN0 ) we denote
ep(t, s) = ∏

u∈[s,t)∩qN0 [(q − 1)up(u) + 1] for s < t, ep(t, s) = 1/ep(s, t) for s > t , and
ep(t, t) = 1, where s, t ∈ qN0 . Here are some useful properties of ep(t, s): for p ∈ R, e(·, a)

is a solution of the IVP Dqy = p(t)y, y(a) = 1, t ∈ qN0 . If s ∈ qN0 and p ∈ R+, where
R+ = {p ∈ R : 1 + (q − 1)tp(t) > 0 for all t ∈ qN0}, then ep(t, s) > 0 for all t ∈ qN0 . If
p, r ∈ R, then ep(t, s)ep(s, u) = ep(t, u) and ep(t, s)er(t, s) = ep+r+t (q−1)pr (t, s).

Now we are ready to introduce the concept of q-regular variation.

Definition 1. A function f : qN0 → (0,∞) is said to be q-regularly varying of index ϑ, ϑ ∈ R,
if there exists a function α : qN0 → (0,∞) satisfying

f (t) ∼ Cα(t), and lim
t→∞

tDqα(t)

α(t)
= [ϑ]q, (3)

with C being a positive constant. If ϑ = 0, then f is said to be q-slowly varying.

The totality of q-regularly varying functions of index ϑ is denoted by RVq(ϑ). The totality
of q-slowly varying functions is denoted by SVq . In fact, we have defined q-regular variation
at infinity. If we consider a function f : qZ → (0,∞), qZ := {qk : k ∈ Z}, then f (·) is said
to be q-regularly varying at zero if f (1/t) is q-regularly varying at infinity. But it is apparent
that it is sufficient to develop just the theory of q-regular variation at infinity. It is easy to see
that the function tϑ is a typical representative of the class RVq(ϑ). Of course, this class is
much wider as can be seen from the representations derived in the following theorem, where
we also offer some other (simple) characterizations of q-regular variation and show a relation
with the continuous theory.

Theorem 1.

(i) (Simple characterization) For a positive function f, f ∈ RVq(ϑ) if and only if f satisfies

lim
t→∞

f (qt)

f (t)
= qϑ . (4)

Moreover, f ∈ RVq(ϑ) if and only if f satisfies just the latter condition in (3), i.e.,
limt→∞ tDqf (t)/f (t) = [ϑ]q .

(ii) (Zygmund-type characterization) For a positive function f, f ∈ RVq(ϑ) if and only if
f (t)/tγ is eventually increasing for each γ < ϑ and f (t)/tη is eventually decreasing for
each η > ϑ .

3
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(iii) (Representation I) f ∈ RVq(ϑ) if and only if f has the representation

f (t) = ϕ(t)eδ(t, 1), (5)

where ϕ : qN0 → (0,∞) tends to a positive constant and δ : qN0 → R satisfies
limt→∞ tδ(t) = [ϑ]q and δ ∈ R+. Without loss of generality, in particular in the only if
part, the function ϕ in (5) can be replaced by a positive constant.

(iv) (Representation II) f ∈ RVq(ϑ) if and only if f has the representation

f (t) = tϑ ϕ̃(t)eψ(t, 1), (6)

where ϕ̃ : qN0 → (0,∞) tends to a positive constant and ψ : qN0 → R satisfies
limt→∞ tψ(t) = 0 and ψ ∈ R+. Without loss of generality, in particular in the only if
part, the function ϕ̃ in (6) can be replaced by a positive constant.

(v) (Karamata-type characterization) For a positive function f, f ∈ RVq(ϑ) if and only if f

satisfies

lim
t→∞

f (τ(λt))

f (t)
= (τ (λ))ϑ for λ � 1, (7)

where τ : [1,∞) → qN0 is defined as τ(x) = max{s ∈ qN0 : s � x}.
(vi) (Imbeddability) If f ∈ RVq(ϑ) then R ∈ RV(ϑ), where

R(x) = f (τ(x))

(
x

τ(x)

)ϑ

for x ∈ [1,∞). (8)

Conversely, if R ∈ RV(ϑ), then f ∈ RVq(ϑ), where f (t) = R(t) for t ∈ qN0 .

Proof. (i) If f ∈ RVq(ϑ), then with limt→∞ ϕ(t) = C > 0 we have

lim
t→∞

f (qt)

f (t)
= lim

t→∞
ϕ(qt)α(qt)

ϕ(t)α(t)
= lim

t→∞
α(t) + (q − 1)tDqα(t)

α(t)
= 1 + (q − 1)[ϑ]q = qϑ,

which implies (4). Conversely,

lim
t→∞

tDqf (t)

f (t)
= lim

t→∞
t

t (q − 1)

(
f (qt)

f (t)
− 1

)
= [ϑ]q .

(ii) If f ∈ RVq(ϑ), then by (i)

f (qt)

(qt)γ
− f (t)

tγ
= f (t)

(qt)γ

(
f (qt)

f (t)
− qγ

)
= f (t)

(qt)γ
(qϑ − qγ + o(1)).

The monotonicity for large t with η instead of γ follows similarly. Conversely, the
monotonicities imply (qt/t)γ � f (qt)/f (t) � (qt/t)η so that qγ � f (qt)/f (t) � qη.
The statement follows by choosing γ and η arbitrarily close to ϑ and using (i).

Statements (iii) and (iv) follow from the implications f ∈ RVq(ϑ) ⇒ f satisfies
(5) ⇒ f satisfies (6) ⇒ f ∈ RVq(ϑ), which will be proved next. If f ∈ RVq(ϑ), then there
is δ such that Dqα(t) = δ(t)α(t) and limt→∞ tδ(t) = [ϑ]q . Since this is a first-order
q-difference equation and α is its positive solution, it has the form α(t) = α0eδ(t, 1)

with α0 > 0. Formula (5) now follows from the first condition in (3) and the fact that
eδ(t, 1) > 0 implies δ ∈ R+. If f satisfies (5), then we have f (t) = ϕ(t)tϑL(t), where
L(t) = eδ(t, 1)/tϑ > 0 and limt→∞ tδ(t) = [ϑ]q . We show that limt→∞ tDqL(t)/L(t) = 0.
Indeed, from

DqL(t) = δ(t)eδ(t, 1) − eδ(t, 1)[ϑ]q
qϑ tϑ

4
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we obtain
tDqL(t)

L(t)
= tδ(t)

qϑ
− [ϑ]q

qϑ
→ 0

as t → ∞. Hence, arguing as in the previous part, there is ψ such that L(t) = ψ0eψ(t, 1) > 0
where ψ0 > 0 and limt→∞ tψ(t) = 0. Thus, f can be written in the form (6). If f satisfies
(6), we have f (t) = ϕ̃(t)α(t), where α(t) = tϑeψ(t, 1) > 0 and limt→∞ tψ(t) = 0. Similarly
as in the previous part, it is easy to show that limt→∞ tDqα(t)/α(t) = [ϑ]q . The fact that ϕ

and ϕ̃ can be replaced by a constant follows from (i).
(v) The if part trivially follows from (i). Conversely assume that f ∈ RVq(ϑ). Then

(6) holds. First observe that if t ∈ qN0 and λ � 1, then t = qn and λ ∈ [qj , qj+1) for some
j, n ∈ N0. Hence, τ(λt)/t = qn+j /qj = τ(λ). From (6) we have

f (τ(λt))

f (t)
= ϕ̃(τ (λt))

ϕ̃(t)

(
τ(λt)

t

)ϑ

eψ(τ (λt), t).

Hence,

lim
t→∞

f (τ(λt))

f (t)
= (τ (λ))ϑ lim

t→∞ eψ(τ(λt), t).

Set qn = t, qn+m = τ(λt),m, n ∈ N0. Note that τ(λ) = qm, where m is fixed since
τ(λt) = τ(λ)t . We have eψ(τ(λt), t) = ∏n+m−1

j=n [(q − 1)qjψ(qj ) + 1]. Since qjψ(qj ) → 0
as j → ∞, we obtain limt→∞ eψ(τ(λt), t). Hence (7) holds for λ � 1.

(vi) First we show that if f satisfies (7), then R : [1,∞) → (0,∞) given by (8) satisfies
R ∈ RV(ϑ). Note that R(t) = f (t) for t ∈ qN0 . We have

lim
x→∞

R(λx)

R(x)
= lim

x→∞
f (τ(λx))

f (τ(x))

(
λx

τ(λx)

)ϑ (
τ(x)

x

)ϑ

= λϑ lim
x→∞

f (τ(λτ(x)))

f (τ (x))
�(x, λ)

= λϑ(τ(λ))ϑ lim
x→∞ �(x, λ),

where

�(x, λ) =
(

τ(x)

τ (λx)

)ϑ
f (τ(λx))

f (τ(λτ(x)))
.

Since for each λ, x � 1, there are m, n ∈ N0 such that λ ∈ [qm, qm+1) and x ∈ [qn, qn+1),
we have λx ∈ [qm+n, qm+n+2), and so either (I) τ(λx) = qm+n = τ(λ)τ(x) or (II)
τ(λx) = qm+n+1 = qτ(λ)τ(x). Recall τ(λτ(x)) = τ(λ)τ(x). In case (I) we obtain
�(x, λ) = (τ (λ))−ϑ , while in case (II) �(x, λ) = (qτ(λ))−ϑf (qτ(λ)τ(x))/f (τ(λ)τ(x)).

Since limt→∞ f (qt)/f (t) = qϑ , from (I) and (II) we obtain limx→∞ �(x, λ) = (τ (λ))−ϑ .
Hence, limx→∞ R(λx)/R(x) = λϑ for all λ > 1 and so by [2, theorem 1.4.1], for all
λ > 0. Consequently, R ∈ RV(ϑ). Conversely, if R ∈ RV(ϑ), then by [2, theorems 1.3.1,
1.4.1], R(x) = (x)xϑ exp

{∫ x

1 �(s)/s ds
}
, where ,� are bounded measurable functions

on [1,∞) such that limx→∞ (x) = const > 0 and limx→∞ �(x) = 0 (� may be taken as
continuous). Hence for t ∈ qN0 we have f (t) = (t)tϑ exp

{∫ t

1 �(s)/s ds
}
. Then,

f (qt)

f (t)
= (qt)

(t)
qϑ exp

{∫ qt

t

�(s)/s ds

}
.

Using the mean value theorem,
∫ qt

t
�(s)/s ds = �(ω(t)) ln q → 0 as t → ∞, where

t � ω(t) � qt . Consequently limt→∞ f (qt)/f (t) = qϑ , and the statement follows from (i).
�

5
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Remark 1. (i) (Important) The so-called normalized regularly varying functions of index
ϑ can be defined as those satisfying the second condition in (3) or, equivalently, as those
having representation (5) or (6) with a constant instead of ϕ(t) or ϕ̃(t), respectively. However,
in contrast to the classical continuous or discrete case, owing to (i) and (ii) of theorem 1,
the distinction between normalized (or Zygmund) and ordinary regular variation disappears
in q-calculus. Therefore, we do not need to introduce the concept of a normalized regular
variation. Moreover, in the q-calculus case we have another property not known in the classical
theories: a Karamata-type characterization (7) can be substantially simplified to (4). Note that
for the discrete case, an analog of (7) is f ([λt])/f (t) → λ� and an analog for (4) can be seen
as f (t + 1)/f (t) → 1. However, the latter one is just necessary for regular variation on Z.
Altogether we see that regularly varying functions in q-calculus can be defined very simply
by (4) or by the second condition in (3), and that ϕ(t) and ϕ̃(t) in representations (5) and (6),
respectively, can be replaced by a positive constant without loss of generality. The reason for
this simplification may be that regular variation can be based on a product characterization
which is very natural for the q-calculus case.

(ii) A suitable extension of the operator τ enables us to have formula (7) also for λ ∈ (0, 1).
(iii) Observe how the above (but also subsequent) results nicely resemble continuous

results as q → 1.

Regularly varying functions on qN0 possess a number of properties. We list the following
ones which will be needed later.

Proposition 1. Regularly varying functions have the following properties:

(i) It holds f ∈ RVq(ϑ) iff f (t) = tϑL(t), where L ∈ SVq .
(ii) Let f ∈ RVq(ϑ). Then limt→∞ log f (t)/ log t = ϑ . This implies limt→∞ f (t) = 0 if

ϑ < 0 and limt→∞ f (t) = ∞ if ϑ > 0.

(iii) Let f ∈ RVq(ϑ). Then limt→∞ f (t)/tϑ−ε = ∞ and limt→∞ f (t)/tϑ+ε = 0 for every
ε > 0.

(iv) Let f ∈ RVq(ϑ). Then f γ ∈ RVq(γ ϑ).

(v) Let f ∈ RVq(ϑ1) and g ∈ RVq(ϑ2). Then fg ∈ RVq(ϑ1 + ϑ2) and 1/f ∈ RVq(−ϑ1).

(vi) Let f ∈ RVq(ϑ). Then f is decreasing provided ϑ < 0, and it is increasing provided
ϑ > 0. A concave f is increasing. If f ∈ SVq is convex, then it is decreasing.

Proof. (i), (iv), (v) The proofs of these parts are trivial.
(ii) From (5), using the q-L’Hospital rule, we have

lim
t→∞

log f (t)

log t
= lim

t→∞

∑
s∈[1,t)∩qN0 log[(q − 1)sδ(s) + 1]

log t
= lim

t→∞
log[(q − 1)tδ(t) + 1]

log q
= ϑ.

Alternatively we can see it from the imbedding result.
(iii) Follows from (6) and (ii) of this proposition.
(vi) The part for ϑ �= 0 is simple. For ϑ = 0, i.e., f ∈ SVq , first we show that D2

qf (t) > 0
implies eventual monotonicity of f . Indeed, either we have Dqf (t) < 0 for all t ∈ qN0 , or
if there is t0 ∈ qN0 such that Dqf (t0) � 0, then 0 � Dqf (t0) < Dqf (qt0) < · · ·, hence
Dqf (t) > 0 for all t ∈ (t0,∞) ∩ qN0 . By a contradiction assume that Dqf (t) � 0. Thanks to
the convexity we have Dqf (t) � M > 0 for large t ∈ qN0 and for some M > 0. Integrating
from s to t we obtain f (t) � f (s) + (t − s)M . But now f cannot be slowly varying by (iii)
of this proposition. �

6
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3. q-regular variation and second-order q-difference equations

Consider the second-order linear q-difference equation

D2
qy(t) = p(t)y(qt), (9)

t ∈ qN0 , where p : qN0 → (0,∞). Qualitative and quantitative properties of equations of this
type were studied, e.g., in [1, 3–5].

Recall that all nontrivial solutions of (9) are nonoscillatory (i.e., are eventually of one
sign) and eventually monotone. Because of linearity, without loss of generality, it is sufficient
to consider just positive solutions of (9). Next we establish necessary and sufficient conditions
for all positive solutions of (9) to be q-regularly varying.

Theorem 2. (i) Equation (9) has a fundamental set of solutions

u(t) = L(t) ∈ SVq, v(t) = tL̃(t) ∈ RVq(1) (10)

if and only if

lim
t→∞ t

∫ ∞

t

p(s) dqs = 0. (11)

Moreover, L̃ ∈ SVq with L̃(t) ∼ 1/L(t). All positive decreasing solutions of (9) belong to
SVq and all positive increasing solutions of (9) belong to RVq(1). Any of two conditions in
(10) implies (11).

(ii) Equation (9) has a fundamental set of solutions

u(t) = tϑ1L(t) ∈ RVq(ϑ1), v(t) = tϑ2L̃(t) ∈ RVq(ϑ2) (12)

if and only if

lim
t→∞ t

∫ ∞

t

p(s) dqs = A > 0, (13)

where ϑi = logq[(q − 1)λi + 1], i = 1, 2, λ1 < 0 < λ2, are the roots of the equation
λ2 − [A(q − 1) + 1]λ − A = 0. It holds ϑ1 < 0 < ϑ2, λ2 = [ϑ2]q = A(q − 1) + 1 − [ϑ1]q =
A(q−1)+1−λ1 and ϑ2 = 1−ϑ1. Moreover, L, L̃ ∈ SVq with L̃(t) ∼ 1/(qϑ1 [1−2ϑ1]qL(t)).
All positive decreasing solutions of (9) belong to RVq(ϑ1) and all positive increasing solutions
of (9) belong to RVq(ϑ2). Any of two conditions in (12) implies (13).

Proof. Parts (i) and (ii) will be proved simultaneously assuming A � 0 in (13) and,
consequently, λ1 � 0 or ϑ1 � 0, if it is not said otherwise. We will use the notation
[a,∞)q = {a, aq, aq2, . . .} ⊆ qN0 .

Necessity. Let u ∈ RVq(ϑ1) be a positive decreasing solution of (9) on [a,∞)q . Set w =
Dqu/u. Then w(t) < 0 and satisfies the Riccati-type q-difference equation

Dqw(t) − p(t) +
w2(t)

1 + (q − 1)tw(t)
= 0 (14)

with w ∈ R+ on [a,∞)q . We have limt→∞ tw(t) = [ϑ1]q and so limt→∞ w(t) = 0. We
show that

∫ ∞
a

w2(t)/(1 + (q − 1)tw(t)) dq t < ∞. Since 1 + (q − 1)tw(t) → qϑ1 , we have
1 + (q − 1)tw(t) > qϑ1/2 for large t. Moreover, there is N > 0 such that |w(t)| � N/t for
large t. Without loss of generality, these large t’s can be taken as t ∈ [a,∞)q . Then∫ ∞

a

w2(t)

1 + (q − 1)tw(t)
dq t � 2N2q

qϑ1

∫ ∞

a

dq t

qt2
= 2N2q

aqϑ1
,

7
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since Dq(1/t) = −1/(qt2). Integration of (14) and multiplication by t yield

−tw(t) + t

∫ ∞

t

w2(s)

1 + (q − 1)sw(s)
dqs = t

∫ ∞

t

p(s) dqs. (15)

The q-L’Hospital rule gives

lim
t→∞ t

∫ ∞

t

w2(s)

1 + (q − 1)sw(s)
dqs = lim

t→∞
qt2w2(t)

1 + (q − 1)tw(t)
= q[ϑ1]q

1 + (q − 1)[ϑ1]q
.

Hence, from (15) we get

lim
t→∞ t

∫ ∞

t

p(s) dqs = [ϑ1]2
q − [ϑ1]q

1 + (q − 1)[ϑ1]q
= A.

Similar arguments show that also v ∈ RV(ϑ2) being a positive increasing solution of (9)
implies (13).

Note that even without assuming monotonicity, a solution u ∈ RV(ϑ1) necessarily
decreases while a solution v ∈ RV(ϑ2) necessarily increases by (vi) of proposition 1.

Sufficiency. Let u be a positive decreasing solution of (9) on [a,∞)q . Then
limt→∞ Dqu(t) = 0. Indeed, if not, then there is K > 0 such that Dqu(t) � −K for
t ∈ [a,∞)q since Dqu is negative increasing. Hence u(t) � u(a)− (t −a)K . Letting t → ∞
we have limt→∞ u(t) = −∞, a contradiction with positivity of u. Integration of (9) from t to
∞ yields Dqu(t) = − ∫ ∞

t
p(s)u(qs) dqs. Hence,

0 <
−tDqu(t)

u(t)
= t

u(t)

∫ ∞

t

p(s)u(qs) dqs � t

∫ ∞

t

p(s) dqs. (16)

If (11) holds, then we are done since (16) implies limt→∞ tDqu(t)/u(t) = 0, and so
u ∈ SVq . Next we assume (13) with A > 0. Set η(t) = tDqu(t)/u(t). From (16),
0 < −η(t) � t

∫ ∞
t

p(s) dqs, and so η is bounded. Further, η satisfies the modified Riccati
q-difference equation

Dq

(
η(t)

t

)
− p(t) +

η2(t)/t2

1 + (q − 1)η(t)
= 0 (17)

with η/t ∈ R+ on [a,∞)q . Since η is bounded, we have limt→∞ η(t)/t = 0 and so integration
of (17) from t to ∞ yields

−η(t)

t
=

∫ ∞

t

p(s) dqs −
∫ ∞

t

η2(s)/s2

1 + (q − 1)η(s)
dqs. (18)

Let us write condition (13) as t
∫ ∞
t

p(s) dqs = A + ε(t), where limt→∞ ε(t) = 0. Further, let
us write ∫ ∞

t

η2(s)/s2

1 + (q − 1)η(s)
dqs = G(t)

∫ ∞

t

dqs

qs2
= G(t)

t
,

where m(t) � G(t) � M(t) with m(t) = infs�t qη2(s)/(1 + (q − 1)η(s)) and M(t) =
sups�t qη2(s)/(1 + (q − 1)η(s)). With these equalities, multiplication of (18) by t yields

G(t) − η(t) = A + ε(t). (19)

We claim that limt→∞ η(t) = [ϑ1]q . Recall that η is bounded and denote K∗ =
lim inft→∞(−η(t)),K∗ = lim supt→∞(−η(t)). Observe the monotone properties of the
function f (x) = qx2/(1 + (q − 1)x) which occurs in the formula for G. Recall that our
‘admissible’ x’s are just the nonpositive ones satisfying 1 + (q − 1)x > 0; the function f

8
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is decreasing for these x’s. The function G is bounded. Define K1 by lim inft→∞ G(t) =
qK2

1

/
(1 − (q − 1)K1) and K2 by lim supt→∞ G(t) = qK2

2

/
(1 − (q − 1)K2). Thanks to

monotonicity of f and boundedness of η we have 0 � K∗ � K1 � K2 � K∗ < 1/(q − 1).
Now we distinguish several cases which lead to a contradiction, and altogether show that
limt→∞ η(t) exists and is equal to [ϑ1]q . Assume, for instance, K1 < −[ϑ1]q . Then
K∗ < −[ϑ1]q . Noticing that

A = [ϑ1]2
q − [ϑ1]q

1 + (q − 1)[ϑ1]q
= q[ϑ1]2

q

1 + (q − 1)[ϑ1]q
− [ϑ1]q

and taking lim inf as t → ∞ in (19) we obtain

qK2
1

1 + (q − 1)(−K1)
+ K∗ = q[ϑ1]2

q

1 + (q − 1)[ϑ1]q
− [ϑ1]q .

Thanks to monotonicity of f , from the last equation we have K∗ = B − [ϑ1]q , where
B = f ([ϑ1]q) − f (−K1) is positive. Hence, K∗ > −[ϑ1]q , a contradiction. In a similar
manner we obtain a contradiction when K∗ < −[ϑ1]q and K1 = −[ϑ1]q . If K1 > −[ϑ1]q ,
then K∗ � K2 > −[ϑ1]q and a contradiction is obtained by taking lim sup as t → ∞ in
(19). This proves that limt→∞ η(t) = [ϑ1]q , and so u(t) = tϑ1L(t) ∈ RVq(ϑ1), where u
is a positive decreasing solution of (9) and L ∈ SVq . Now consider a linearly independent
solution v of (9), which is given by v(t) = u(t)

∫ t

a
(1/(u(s)u(qs))) dqs. Put z = 1/u2. Then

z ∈ RVq(−2ϑ1) by (v) of proposition 1. Since
∫ ∞
a

(1/(u(s)u(qs))) dqs = ∞, the q-L’Hospital
rule and theorem 1 yield

lim
t→∞

t/u(t)

v(t)
= lim

t→∞
tz(t)∫ t

a
(1/(u(s)u(qs))) dqs

= lim
t→∞

z(t) + qtDqz(t)

1/(u(t)u(qt))

= lim
t→∞

(
u(t)u(qt)

u2(t)
+

qu(t)u(qt)

u2(t)
· tDqz(t)

z(t)

)
= qϑ1 + qϑ1+1[−2ϑ1]q =: γ.

Hence, γ v(t) ∼ t/u(t) = t1−ϑ1/L(t). Consequently, v(t) = tϑ2L̃(t), where L̃(t) ∼
1/(γL(t)), L̃ ∈ SVq , and so v ∈ RVq(ϑ2) by (v) of proposition 1 since ϑ2 = 1 − ϑ1.
The last equality follows from

ϑ2 = logq[(q − 1)λ2 + 1] = logq[(q − 1)(A(q − 1) + 1 − λ1) + 1]

= logq

[
(q − 1)

(
(q − 1)

(
λ2

1 − λ1
)

1 + (q − 1)λ1
+ 1 − λ1

)
+ 1

]

= logq

q

1 + (q − 1)λ1

= logq q − logq[(q − 1)λ1 + 1]

= 1 − ϑ1.

The solution v increases by (vi) of proposition 1. For the quantity γ we have

γ = qϑ1

(
1 +

q1−2ϑ1 − q

q − 1

)
= qϑ1

q1−2ϑ1 − 1

q − 1
= qϑ1 [1 − 2ϑ1]q .

The theorem is proved. �

Remark 2. (i) Denote the set of all positive solutions of (9) as M. Thanks to the monotonicity,
the set M can be further split in the two classes M

+ and M
−, where

M
+ = {y ∈ M : ∃ty ∈ qN0 such that y(t) > 0, Dqy(t) > 0 for t � ty},

M
− = {y ∈ M : y(t) > 0, Dqy(t) < 0}.

9
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Denote M
−
SV = M

− ∩ SVq, M
−
RV (ϑ1) = M

− ∩ RVq(ϑ1), ϑ1 < 0, M
+
RV (ϑ2) = M

+ ∩
RVq(ϑ2), ϑ2 > 0, M

−
0 = {y ∈ M

− : limt→∞ y(t) = 0}, M
+
∞ = {y ∈ M

+ : limt→∞ y(t) =
∞}. In view of theorem 2 and proposition 1, we can write

M
− = M

−
SV ⇐⇒ (11) ⇐⇒ M

+ = M
+
RV (1) = M

+
∞,

M
− = M

−
RV (ϑ1) = M

−
0 ⇐⇒ (13) ⇐⇒ M

+ = M
+
RV (ϑ2) = M

+
∞.

(ii) In the if parts of theorem 2, conditions (11) and (13) can be replaced by the simpler
ones limt→∞ t2p(t) → 0 and limt→∞ t2p(t) → A/q, respectively.

(iii) For related results concerning differential and difference equations cases see [12, 14],
respectively. Observe how the constants (indices of regular variation) ϑ1, ϑ2 in theorem 2
differ from those in the continuous case. On the other hand, note how theorem 2 resembles
the continuous result as q → 1.
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